Studying Irreversible Transitions in a Model of Cell Cycle Regulation

نویسندگان

  • Paolo Ballarini
  • Tommaso Mazza
  • Alida Palmisano
  • Attila Csikász-Nagy
چکیده

Cells life follows a cycling behaviour which starts at cell birth and leads to cell division through a number of distinct phases. The transitions through the various cell cycle phases are controlled by a complex network of signalling pathways. Many cell cycle transitions are irreversible: once they are started they must reach completion. In this study we investigate the existence of conditions which lead to cases when irreversibility may be broken. Specifically, we characterise the elements of the cell cycle signalling network that are responsible for the irreversibility and we determine conditions for which the irreversible transitions may become reversible. We illustrate our results through a formal approach in which stochastic simulation analysis and model checking verification are combined. Through probabilistic model checking we provide a quantitative measure for the probability of irreversibility in the “Start” transition of the cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of berberine on the secretion of cytokines and expression of genes involved in cell cycle regulation in THP-1 monocytic cell line

Objective(s): Current acute myeloid leukemia (AML) therapeutic strategies have irreversible side-effects. Berberine (BBR) is an isoquinoline alkaloid, which has been known as an aryl hydrocarbon receptor (AhR) ligand. AhR is a cytoplasmic receptor, which is involved in the regulation of cellular and immune responses. Here, we investigated the expression profile of genes involved in the cell cyc...

متن کامل

Molecular mechanisms creating bistable switches at cell cycle transitions

Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i-1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activa...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions.

In recent years, molecular biologists have uncovered a wealth of information about the proteins controlling cell growth and division in eukaryotes. The regulatory system is so complex that it defies understanding by verbal arguments alone. Quantitative tools are necessary to probe reliably into the details of cell cycle control. To this end, we convert hypothetical molecular mechanisms into set...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 232  شماره 

صفحات  -

تاریخ انتشار 2009